
 

 

Performance of Network of Queues with Traffic 

Modeled by Heavy-tailed Distributions 

 
Abstract— Markovian models are not suitable for traffic 

modeling in some modern telecommunications networks. Among 

the new proposed models, those based on heavy-tailed distributions 

offer lower complexity. There are a lot of investigations of this kind 

of model considering a stand alone queue, but there is a lack of 

analysis for networks of queues. In this paper we analyze the 

performance of networks of queues under traffic modeled by 

heavy-tailed distributions, considering G/M/1 and G/G/1 models, 

with G modeled by Pareto, Lognormal and Weibull distributions. 

We analyze open networks with and without add/drop traffic. 

 

I. INTRODUCTION 

Traffic in telecommunications networks has evolved from 

voice traffic to multimedia traffic, including voice, data and 

video. In this new scenario, the traditional Markov models are 

not suitable to characterize the traffic in telecommunications 

networks. 

In 1994, Leland et al [1] demonstrate that Ethernet Local 

Area Network traffic is statistically self-similar and that none 

of the traditional traffic models is able to capture this behavior. 

Since then, several studies were conducted to propose new 

traffic models to telecommunications networks. These works 

can be classified in three categories: 

a) Based on measurements. 

b) Based on fractal models. 

c) Based on generic models. 

The approach based on generic models is less complex than 

fractal models [2][3] and is the subject of this work. In this 

kind of model, the arrival processes is modeled by a heavy-

tailed distribution, like Pareto, Lognornal or Weibull 

distributions, and the service time can be modeled by an 

exponential distribution (G/M/1 queue), by a heavy-tailed 

distribution (G/G/1 queue) or can be considered constant 

(G/D/1 queue). 

Several works have analyzed the performance of isolated 

single server queues with the traffic modeled by a heavy-tailed 

distribution, but there is a lack of analysis for networks of 

queues in this scenario. 

The goal of this paper is to evaluate, based on simulations, 

the performance of networks of queues with the traffic 

modeled by Pareto, Lognormal and Weibull distributions. Two 

scenarios have been considered: 

a) Scenario I: an open network of queues without add/drop 

traffic. 

b) Scenario II: an open network of queues with add/drop 

traffic after each queue. 

 

The parameters used to evaluate the performance of the 

networks are the mean waiting time of each queue, as a 

function of the position of the queue, and the total network 

delay. For both parameters, we present the results as a function 

of the  utilization factor in each queue. 

There are three approaches to vary the utilization factor of 

the queue in simulations involving traffic modeling with 

heavy-tailed distributions [4][5]. In this work, we opted to vary 

the utilization factor by varying the service time of the server. 

Thus, we can use fixed shape parameters of the heavy-tailed 

distributions, thus maintaining the control over the auto-

similarity of the traffic. Due this, it is necessary to normalize 

the time/delays by the service time. Thus, in all results 

presented in this paper, the mean waiting time and the total 

network delay are normalized by the service time. 

The remaining of this paper is organized as follow: Section 

II presents some characteristics of the heavy-tailed 

distributions used in this paper; Section III describes the 

scenarios used in our simulations; Section IV presents the 

results for the scenario without add/drop traffic; Section V 

presents the results considering add/drop traffic; and, finally, 

Section VI presents the conclusions.  

II. HEAVY-TAILED DISTRIBUTIONS 

Let X a random variable (R.V) with Probability Density 

Function (PDF) f(x) and Cumulative Distribution Function  

(CDF) F(x). The R.V. X has a heavy-tailed distribution if: [6] 
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Some important heavy-tailed distributions used to traffic 

modeling in telecommunications networks are Pareto, 
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Lognomal and Weibull distributions. The main characteristics 

of these distributions are resumed below. 

A. Pareto Distribution 

Pareto distribution is widely used for traffic modeling in 

telecommunications networks. This distribution can be 

represented using one, two or three parameters. Results 

presented in [7] show that the use of Pareto with two 

parameters results in a lower mean queuing time, compared 

with the one parameter distribution. In our work, we opted to 

use de Pareto Distribution with one parameter. 

The Probability Density Function of Pareto distribution with 

one parameter is given by: [7] 
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The parameter α is the shape parameter of the distribution. 

If this parameter takes values between one and two, the 

expected value of the R.V. is finite, its variance is infinity and 

the process is self-similar. The expected value can be 

computed by 
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B. Lognormal Distribution 

Although Lognormal distribution is mentioned in several 

works as a heavy-tailed distribution, it does not have infinite 

variance, which is the main characteristic of a heavy tailed 

distribution [8][9]. However, as their moments increase very 

rapidly, it has also been used for traffic modeling. 

The Probability Density Function for Lognormal 

distribution is given by: 
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where µ and β are the shape parameters of the distribution. 

The expected value for this distribution is given by: 
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C. Weibull Distribution 

Weibull distribution has also been used to traffic modeling 

in telecommunications networks [5][10]. The PDF of this 

distribution is given by: 
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where α and β are the shape parameters of the distribution. 

To characterize a heavy-tailed distribution, the parameter α 

must take values between zero and one [11].  

The expected value of the Weibull distribution is given by 

equation: 
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III. SCENARIOS FOR THE SIMULATIONS 

In our simulations, we have used the software Arena 11.0 

Professional. This tool does not provide the possibility to 

generate Pareto distributions directly. Thus, for this 

distribution we have used the Percentile Transformation 

Method [12]. 

Gross et al [13] show that there are some difficulties in 

simulating queues with Pareto service. To overcome these 

problems, it is necessary to consider a truncated expected 

value, obtained from a truncated CDF, for the distribution. 

This truncated expected value is given by [12]: 
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where T is the truncation parameter and F(T) is given by: 

 

( )
( )α

T
TF

+
−=

1

1
1                             (10) 

 

We have considered two scenarios in our analysis. In the first 

one, called scenario I, we consider an open network of queues 

without add/drop traffic; in the second one, called scenario II, 

we consider an open network of queues with add/drop traffic 

after each queue. Figures 1 and 2 illustrate the scenarios I and 

II, respectively. 

 

 
Fig. 1: Scenario 1 – Open network of queue without add-drop. 
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Fig. 2: Scenario I1 – Open network of queues with add-drop. 

 

In both scenarios we analyze the networks considering 

G/M/1 queues or G/G/1 queues. In G/G/1 model, the packet 

generator and service time in each queue is modeled by a 

heavy-tailed distribution: Pareto, Lognormal or Weibull. In 

G/M/1 model, the packet generator is modeled by a heavy-

tailed distribution and the service time is considered with 

Exponential distribution. All queues are single server queue. 

In both scenarios, the shape parameters of the heavy-tailed 

distributions used in packet generators are: Pareto, α = 1.3; 

Lognormal, α = 1.015 and β = 2; Weibull, α = 0.257 and β = 

1. 

In both scenarios, the service time is varied in such a way to 

vary the utilization factor of the queues.   

 

IV. RESULTS FOR SCENARIO I  

In this scenario, the focus of our investigation is the 

behavior of the queue as a function of its position in the 

network. The parameter used to define the performance of the 

queue is the normalized mean waiting time in each queue. 

Figure 3 shows the waiting time as a function of the position 

of the queue in the network, considering G/M/1 queues, with G 

modeled by Pareto distribution. For comparison, we plot the 

performance of an M/M/1 queue in the same figure. We can 

see that as we walk away from the traffic generator, the queue 

tends do behave like an M/M/1 queue.  

Figure 4 shows the waiting time as a function of the position 

of the queue in the network, considering now G/G/1 queues, 

with G modeled by Pareto distributions. Comparing with  

Figure 3, we can see that, in this case, the performance tends to 

M/M/1 system in a very slow way. 

Similar conclusions have been obtained for Lognormal and 

Weibull distributions, considering G/M/1 and G/G/1 queues. 

Figures 5 and 6 show the results for Lognormal distributions 

and Figures 7 and 8 for Weibull distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Normalized mean waiting times for first, third, fifth and tenth queues 

of the network considering Pareto/M/1 and M/M/1 models. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Normalized mean waiting times for first, third, fifth and tenth queues 

of the network considering Pareto/Pareto/1 and M/M/1 models. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Normalized mean waiting times for first, third, fifth and tenth queues 

of the network considering Lognormal/M/1 and M/M/1 models. 
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Fig. 6: Normalized mean waiting times for first, third, fifth and tenth queues 

of the network considering Lognormal/Lognormal/1 and M/M/1 models. 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

Fig. 7: Normalized mean waiting times for first, third, fifth and tenth queues 

of the network considering Weibull/M/1 and M/M/1 models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8: Normalized mean waiting times for first, third, fifth and tenth queues 

of the network considering Weibull/Weibull/1 and M/M/1 models. 

 

To finalize this section, Figure 9 compares the total network 

delay for G/M/1, G/G/1 and M/M/1 for a network with ten 

queues, with G modeled by Pareto, Lognormal and Weibull 

distributions. Based on this figure, we can see that, for G/G/1 

model, the Lognormal distribution results in a closer to the 

M/M/1 model than the other distributions. Considering G/M/1 

model, the performances for all distributions are similar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Total Network delay for G/M/1, G/G/1 and M/M/1 models. 

 

V. RESULTS FOR SCENARIO I I 

In this section we analyze the normalized mean waiting time 

in each queue as a function of the position in the network, but 

considering add-drop traffic in each queue. We consider that 

the new traffic added to the network is equal to the traffic 

dropped in the same point.  

Figure 10 shows the results considering a 50% add/drop 

traffic after each queue, while Figure 11 shows the results 

considering 5% add/drop traffic. The queue models in both 

figures are G/M/1, with traffic generators modeled by a Pareto 

distribution and service time modeled by an exponential 

distribution. For comparison, the result for M/M/1 model is 

plotted too.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Normalized mean waiting times in each queue considering 

Pareto/M/1 and M/M/1 queues with 50% add/drop traffic. 
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Fig. 11: Normalized mean waiting times in each queue considering 

Pareto/M/1 and M/M/1 queues with 5% add/drop traffic. 

 

Comparing figures 10 and 11, we can see that the model 

Pareto/M/1 has performance closer to the M/M/1 model when 

the percentage of add/drop is smaller.  

Figures 12 and 13 show the normalized mean waiting time 

in each queue, considering now a G/G/1 model, with the traffic 

generator and service time modeled by a Pareto distribution. In 

Figure 12 the percentage of add/drop is 50%, while in Figure 

13 this percentage is 5%. 

 

 

 

 

 

 

 

 

 

Fig. 12: Normalized mean waiting times in each queue considering 

Pareto/Pareto/1 and M/M/1 queues with 50% add/drop traffic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Normalized mean waiting times in each queue considering 

Pareto/Pareto/1 and M/M/1 queues with 5% add/drop traffic. 

 

Comparing figures 12 and 13, we can see that the model 

Pareto/Pareto/1 has performance closer to the M/M/1 model 

when the percentage of add/drop is smaller.  

Thus, in both models, G/M/1 and G/G/1, with G modeled by 

Pareto distribution, the performance is closer to the M/M/1 

model when the percentage of add/drop is smaller. Similar 

conclusions are obtained using Lognormal and Weibull 

distributions.  

Figures 14 and 15 show the results for Lognormal/M/1 

model, figures 16 and 17 for Lognormal/Lognormal/1 model, 

figures 18 and 19 for Weibull/M/1 model and figures 20 e 21 

for Weibull/Weibull/1 model. 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Normalized mean waiting times in each queue considering 

Lognormal/M/1 and M/M/1 queues with 50% add/drop traffic. 
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Fig. 15: Normalized mean waiting times in each queue considering 

Lognormal/M/1 and M/M/1 queues with 5% add/drop traffic. 

 

 

 

 

 

 

 

 

 

 

Fig. 16: Normalized mean waiting times in each queue considering 

Lognormal/Lognormal/1 and M/M/1 queues with 50% add/drop traffic. 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Normalized mean waiting times in each queue considering 

Lognormal/Lognormal/1 and M/M/1 queues with 5% add/drop traffic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.Fig. 18: Normalized mean waiting times in each queue considering 

Weibull/M/1 and M/M/1 queues with 50% add/drop traffic. 
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Fig. 19: Normalized mean waiting times in each queue considering 

Weibull/M/1 and M/M/1 queues with 5% add/drop traffic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20: Normalized mean waiting times in each queue considering 

Weibull/Weibull/1 and M/M/1 queues with 50% add/drop traffic. 
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Fig. 21: Normalized mean waiting times in each queue considering 

Weibull/Weibull/1 and M/M/1 queues with 5% add/drop traffic. 

 

VIII. CONCLUSIONS 

In this paper we analyzed the performance of networks of 

queues under traffic modeled by heavy-tailed distributions. 

We consider open networks with and without add/drop 

traffic after each queue.  

The models used in simulations are G/M/1 and G/G/1, with 

G modeled by Pareto, Lognormal or Weibull distributions. 

We conclude that the mean waiting time in each queue tends 

to the performance of a M/M/1 system as we move away from 

the first traffic source, with the velocity of the trend depending 

of the type of the queue (G/M/1 or G/G/1), of the type of the 

distribution and of the percentage of the add/drop traffic.  

Also, analyzing the results, we can observe the influence of 

the heavy-tailed distributions (Pareto, Lognormal or Weibull) 

in the performance of the system. 
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